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Hydrogenase enzymes are utilized by numerous microorgan-
isms to produce dihydrogen or to take up dihydrogen in support

of their metabolic activities. The two families of metallo-
hydrogenases feature FedMBR)(CO),(CN), cores!3 Having
cyanide and CO coligands as well as metaletal bonding, the
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Fe,(SR,(CO) + 2 CN™ — F&,(SR),(CO),(CN),”~ + 2 CO
1, R=CH,
2,R,=1,3-CH
> CHe W

cyanides, i.e., FASMe)(CO)-n(CN),"~ (n > 2). Furthermore,
the substitution is selective for placement of one G each

Fe center, consistent with IR structural studies on the prétein.
Crystallographic analysi$ of (PPh)[Fex(SMeh(CO)(CN),]
confirmed the expected connectivity but suffered from disorder
due to cocrystallization of the diequatorial and axial, equatorial
isomers:
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hydrogenase active sites represent a link between the otherwise (NC)(OC)ZFLFe(CO)g(CN) (NC)(OC)zFé—Fe(CO)Z(CN)

disparate realms of organometallic and biologicat-Bechem-
istry. =6 The structure proposédor the binuclear center of the
Fe-only hydrogenases is depicted on the left of the following
schematic next to the molecule prepared in this study:
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While a number of details remain uncertain, the active site
structure is reproduced in crystallography of enzymes from two
different generd®

Initial preparative efforts targeted the series,(B&le)-
(CO)-n(CN)"". Solutions of FgSMe)(CO)® in methanol or
acetonitrile react in minutes with JNCN to give exclusively
Fe(SMeh(CONU(CN),?~ (1, eq 1). Analytically pure BEN* (1a)
and PhP" (1b) salts were precipitated in good yieltfswe were

An alternative approach to F&&—CO—CN~ assemblies was
pursued starting from E8,(CO) because we expected to be able
to effect reactions of the-SS bond after CN for CO substitu-
tion.!2 This reaction afforded (NB%[FesSs(CO)2),** indicating
that the mildly reducing CN induces S-centered redox, not
substitution, in contrast to the case for ISR derivatives.

The crystallographic analysis of thi2 desulfuricansderived
enzyme indicates that the Fe atoms are bridged via a 1,3-
propanedithiol derivativé Such a dithiolate is constrained to the
diaxial geometry, obviating problems with isomerism atgh8R
sites® Red microcrystalline (NE)[Fex(S;CsHs)(COM(CN),] (23,
Figure 1) was obtained in 94% yield using methods for the
preparation ofla. Compoundais stable in solutions for extended
periods but rapidly decomposes in air. DynaA#c NMR studies
on2ashow that the trimethylene strap inverts rapidly on the NMR
time scale at room temperature. Similarly, at room temperature,
we observe only on&CN signal (50% enriched), while at40
°C we observe two peaks attributed to the cessation of the ring-
folding dynamics. Concomitant with the splitting of ti@&N~

unable to isolate monocyano species, even when a deficiency ofsignals, the trimethylen€H, signals split into two sets at40

E4NCN was used, indicating that the binding of the first CN

°C.

enhances the rate of substitution at the second metal. On the other Crystallographic characterization 88 confirms the resem-

hand, excess EXICN did not lead to the formation of higher
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blance of the [F&S,CsHe)(COM(CN),]?>~ dianion and the bi-
nuclear sites in the hydrogenases. The 1,3-propane dithiolate
bridges a pair of Fe atoms, each coordinated by one ahd

two CO ligands. The FeFe distance (2.517 A), which is clearly
bonding, is comparable to that seen for bothy(ER)(CO)
derivatived>”but somewhat shorter than in both protein structures
(ree-re ~ 2.6 A) 78 The crystallography confirms the presence of
one CN on each Fe, as has been suggested for Ghe
desulfuricangrotein? The Fe-CX (X = O vs N) distances are
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ity of 3 and the irreversible nature of the oxidations lead us to
propose tha8 is polymeric, which would be consistent with the
unsaturated 32econfiguration for monomeric RES;R),(CO),-
(CN), (eq 2). While polymeric cyanometalates are well prece-

NFe,(u-SRY(COY(CN),2” —— [Fe,(u-SRH(CO)(CN)],
0

dented (cf. Prussian BI&®, redox-induced polymerization of

cyanometalate monomers is uncommon and merits further study,

perhaps using solubilizing thiolato ligands. Not surprisingly, and

as seen in the protei,oxidation of2 causes a significant shift

in both thevco andvey bands®to higher frequencied.Compound

3 is a promising synthetic entry into the 'BESR»—CO—-CN

manifold, as demonstrated by its reaction with imidazoles and

) o CN™ to give soluble F&S,C3Hg)—CO—CN-—L derivatives, which

l(zz%ure tlh tﬁtrucmlre”(_’f th%d|ant|ont 't’;] (EsﬂgfjﬁFeZ(SéCg'_'l'_?(?O)‘tl(Cg)f] o will be the subject of a future report.

~g), With thermal ellipsoids set at the oU% probabiiity level. selecte In summary, the electron-rich species(SgCsHe)(CN),(CO)2~

g:ﬁrggsl(é‘%&g?. igi'gi (gzggégl(:fel)l-’lzgg;(sz);zggggéi 1':'222262); bears a stoichiometric and structural resemblance to the Fe-only

L X o ' ' ' ' hydrogenases. The ready availability of these species should

2.5171(12); C+Fel-C2, 98.8(2); C+Fel-C3, 90.1(2); C2 Fel-C3, - ; .
98.3(2). FerS1—Fe2, 67.25(5) StFel—S2, 85.74(6). facilitate study of the molecular basis of hydrogenase catalysis.
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Note Added in Proof: Crystallographic analysis of the Fe-
only hydrogenase (Cpl) fror€. pasteurianunreveals that the
CO-inhibited enzyme has a Fe(G{JN) site as seen in com-
poundsl and?2 (Lemon, B. J.; Peters, J. VBiochemistryl 999

eq 1). .
In contrast to the hexacarbonyls ,f8R)(CO), 2 is quite in press).
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